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We provide a detailed and quantitative Fokker-Planck analysis of noise-induced periodicity �stochastic
coherence, also known as coherence resonance� in both a discrete-time model and a continuous-time model of
excitable neurons. In particular, we show that one-dimensional models can explain why the effects of noise
added to the fast and slow dynamics of the models are dramatically different. We argue that such effects should
occur in any excitable system with two or more distinct time scales and need to be taken into account in
experiments investigating stochastic coherence.
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I. INTRODUCTION

Noise can often play a constructive role in nonlinear dy-
namical systems. Under appropriate conditions, noise can en-
hance the response of a nonlinear system to an external sig-
nal, an effect known as stochastic resonance �1�. For other
systems, noise can enhance the periodicity of an oscillatory
component of the system’s behavior, an effect known as au-
tonomous stochastic resonance �2,3�, coherence resonance
�4�, or stochastic coherence �5�. We prefer, and will use, the
term “stochastic coherence” instead of “coherence reso-
nance” because the former emphasizes the stochastic induce-
ment of periodicity �“coherence”�. There is no explicit “reso-
nance” effect.

Stochastic coherence has been demonstrated in models of
single excitable systems �3,4,6–12�, coupled excitable sys-
tems �13–16�, coupled chaotic systems �17,18�, spatiotempo-
ral arrays �19–21�, systems with time delays �22�, and a few
experimental systems �14,23–29�. Reference �30� provides a
review of stochastic coherence �and stochastic resonance� in
excitable systems.

In a recent paper �31�, we demonstrated an additional fea-
ture of stochastic coherence in excitable systems with two
distinct time scales �a fast scale and a slow scale�: adding
noise to the dynamics of the fast variable produces a stochas-
tic coherence effect significantly different from that produced
by adding noise to the dynamics of the slow variable. We
demonstrated the effect in both a discrete-time model �32�
and a continuous-time model �33� of excitable neurons. This
fast vs slow effect enriches the repertoire of noise-induced
phenomena. The effect should also be important in the inter-
pretation of experimental observations of stochastic coher-
ence in any system with multiple time scales.

In this paper, we demonstrate this fast vs slow noise effect
over a wider range of parameter values and also with a dif-
ferent continuous-time model. We also present a detailed
Fokker-Planck analysis that allows for noise in both the fast
and slow dynamics and provides a quantitative description of

the fast and slow noise effects in both the discrete-time and
continuous-time models.

In Sec. II, we introduce the discrete-time neuron model.
Section III displays the enhanced periodicity of the discrete-
time dynamics of that model as a function of noise ampli-
tude. In Sec. IV, we provide a quantitative explanation of
these effects for the discrete-time model using a one-
dimensional Fokker-Planck first-exit-time formulation. Sec-
tion V introduces the FitzHugh-Nagumo model, a
continuous-time neuron model, and we discuss stochastic co-
herence in its behavior as a function of noise amplitude. A
Fokker-Planck analysis of the FitzHugh-Nagumo model’s
stochastic coherence is given in Sec. VI. Section VII con-
cludes the paper with some discussion of the results and
possible applications to experimental systems. We also con-
sider the limitations of the one-dimensional models. In a sub-
sequent paper �34�, we will expand the analysis to general
systems with two distinct time scales.

II. RULKOV MODEL

Real neurons often display �at least� two time scales �35�:
fast dynamics corresponding to action potentials and slow
dynamics corresponding to gating-ion concentration varia-
tions. We first consider a discrete-time �iterated map� neuron
model, recently introduced by Rulkov �32�, that captures this
fast-slow distinction. The behavior of this model, though not
directly linked to the physiology of neurons, nevertheless
mimics that of actual neurons �36,37�. The model has two
dynamical variables: xn, corresponding to the membrane
voltage in a neuron, and yn, corresponding to a gating-ion
concentration �usually Ca2+ in actual neurons�. With additive
noise terms, the model takes the following form:

xn+1 = f�xn,yn� + �Dx�xn =
�

1 + xn
2 + yn + �Dx�xn, �1�

yn+1 = g�xn,yn� + �Dy�yn = yn − �xn − � + �Dy�yn, �2�

where � ,�, and � are parameters that set the model’s deter-
ministic behavior through the functions f and g. n is the*Electronic address: rchilborn@amherst.edu
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iteration number �discrete-time index�. The two independent
noise terms �xn and �yn have zero mean and variance D. The
corresponding probability distributions are taken to be
Gaussian. Reference �38� contains an elementary introduc-
tion to the dynamics of the model.

In spite of its simplicity, the Rulkov model captures many
of the important features of neuron behavior. With adjust-
ment of the parameter �, the model can have excitable be-
havior ���2�, sustained periodic pulses �2���4�, chaotic
bursts of pulses �4���4.6�, sustained chaotic pulses �4.6
���7�, and complicated sequences of periodic pulses ��
�7�. �For 2.6���4, the periodic pulses have a complex
substructure.� Figure 1 illustrates the behavior of the system
for �=2.02, which puts the model in a periodic pulse regime.
We see that x mimics the fast rise and fall of action potentials
while y has more limited and smoother excursions, charac-
teristic of gating-ion concentration variations near nerve cell
membranes. Since the parameters � and � are small, the
variations in y are slower than those for x.

For ��1.998, the behavior consists of damped oscilla-
tions as the system approaches the �no-noise� fixed point at
x=−� /�=−1 and y=−1−� /2. This behavior is illustrated in
Fig. 2. The fixed point is a spiral attractor. For 1.998��
�1.999 009 77, the behavior consists of sustained, small-
amplitude oscillations around the fixed point. These oscilla-
tions are analogous to the so-called subthreshold oscillations
observed in real neurons �39,40�. In this paper we focus on
the excitable regime with ��1.998.

III. STOCHASTIC COHERENCE IN THE RULKOV
MODEL

We now turn to the behavior of the Rulkov model, Eqs.
�1� and �2�, with nonzero noise terms and explore the phe-
nomenology of stochastic coherence in this model. We start
with �=1.99, which puts the system in an excitable regime.
If no noise is present, the long-term behavior is just a steady
state at the fixed point values x*=−� /�=−1 and y*=−1
−� /2. With noise present, however, a large noise “kick” can
move the system sufficiently far from the no-noise fixed

point, leading to a large excursion through state space �a
pulse� before the system returns to the fixed point. Figure 3
illustrates noise-induced pulses for Dx=1.6�10−5 and Dy
=0. The number of pulses per unit time is described approxi-
mately by a Poisson distribution.

As the noise level increases, the pulses first become more
regular as illustrated in Fig. 4. For still larger noise ampli-
tudes, the regularity of the pulses decreases.

We now turn to stochastic coherence, the main topic of
this paper. Stochastic coherence �also known as coherence
resonance �4�� is an enhanced periodicity of a system’s be-
havior with increasing noise intensity. For an excitable sys-

FIG. 1. A plot of xn and yn as a function of iteration number n
for the Rulkov model with �=2.02 and �=�=10−3. The noise
terms have been set to zero.

FIG. 2. Rulkov model trajectories xn and yn as a function of
iteration number n for �=1.99 and �=�=10−3. The trajectories
approach the fixed point, whose coordinates are x*=−1 and y*=
−1−� /2. The noise terms have been set to zero.

FIG. 3. Noise-induced pulses in the Rulkov model for �
=1.99, �=�=10−3 , Dx=1.6�10−5, and Dy =0, after transients
have died out. The upper trace is xn and the lower trace is yn as a
function of iteration number n.

R. C. HILBORN AND R. J. ERWIN PHYSICAL REVIEW E 72, 031112 �2005�

031112-2



tem, we quantify the periodicity by finding the ratio of the
mean time between noise-induced pulses �T� to the variance
of that time var�T�. The “regularity” R �41� is defined as

R =
�T�

�var�T�
. �3�

Note that R is the reciprocal of the quantity used by Pikovsky
and Kurths �4� to characterize coherence resonance. The re-
ciprocal is the same as the “coefficient of variation” often
employed in neuroscience �42� as a measure of interspike
interval regularity. Stochastic coherence may occur in an ex-
citable system because the time between noise-induced
pulses decreases as the noise intensity increases, while, for
small noise intensities, the excursion time is little affected by
noise. This effect tends to increase the regularity of the sys-
tem’s behavior. For larger noise intensities, the system is
“activated” as soon as the excursion phase ends, and the
noise starts to cause significant fluctuations in the excursion
time itself, thus tending to decrease the regularity. The com-
bination of these two trends leads to a maximum in the regu-
larity as a function of noise intensity.

Figure 5 shows the regularity for the Rulkov model as a
function of noise intensity for two cases: �1� noise added
only to the dynamics of y �the slow variable� and �2� noise
added only to the dynamics of x �the fast variable�. Each data
point represents the average over ten noise realizations, each
of which consists of 5�105 iterations of Eqs. �1� and �2�
after allowing transients to die out. We note two important
features. First, when noise is added only to the slow variable,
the relevant range of noise intensities is about three orders of
magnitude smaller than for the case of noise added only to
the fast variable. Second, the maximum size of the regularity
is significantly smaller for the first case �noise added only to
y� than for the second �noise added only to x�. Three other
trends should also be noted. �1� For smaller values of �, the
system’s fixed point is further from the self-sustained pulsing
mode and larger noise amplitudes are required to achieve the
maximum in the regularity. �2� The maximum value of the
regularity decreases as � decreases. �3� For smaller values of

�, the difference in the maximum regularity for x noise as
compared to that for y noise decreases. In Sec. IV we will
provide a quantitative explanation of these effects.

Figure 6 illustrates the regularity of the Rulkov model
with �=1.99 when both noise sources are present. Two
trends should be noted. First, considering the regularity as a
function of Dx for fixed values of Dy, we see that the maxi-
mum value of R drops rapidly as Dy increases. In particular,
for Dy �10−6 , R monotonically decreases as Dx increases.
Second, consider R as a function of Dy for various values of
Dx. As Dx increases, the location of the maximum value of R
shifts to smaller Dy values. For Dx�10−3 , R decreases
monotonically for increasing Dy.

FIG. 4. Noise-induced pulses in the Rulkov model for �
=1.99, �=�=10−3 , Dx=9�10−4, and Dy =0.

FIG. 5. The regularity R for the Rulkov model, Eqs. �1� and �2�,
plotted as a function of the logarithm of the noise variance. The
squares �on the left� are data for Dx=0. The circles �on the right� are
data for Dy =0. Open symbols: �=1.99. Black symbols: �=1.95.
Gray symbols: �=1.91. Here, we use �=�=10−3. The uncertainty
bars indicate the standard deviation of the mean over ten noise
realizations and are, in most cases, smaller than the plotted
symbols.

FIG. 6. The regularity R for the Rulkov model, Eqs. �1� and �2�,
as a function of log10 Dx and log10 Dy with �=1.99, �=�=0.001.
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As we mentioned previously, � and � control the time-
scale separation between the fast and slow dynamics. If �
and � become smaller, the time-scale separation increases.
Figure 7 displays the regularity R as a function of noise
amplitude for �=�=10−4 and �=�=10−2. �Note the loga-
rithmic scale for R.� We see that for smaller values of � and
�, the difference in response to noise in the fast dynamics
versus noise in the slow dynamics is enhanced: the ratio of
the two maxima is larger and the noise scales are further
separated. For �=�=10−2, the difference between fast and
slow noise effects is diminished. In the next section we turn
to a theoretical explanation of these effects.

IV. FOKKER-PLANCK ANALYSIS OF STOCHASTIC
COHERENCE FOR THE RULKOV MODEL

A. General comments

To provide a deeper and more quantitative understanding
of the noise-induced periodicity �stochastic coherence�, we
make use of a Fokker-Planck analysis of the dynamics
�43–46�. The general strategy of a Fokker-Planck analysis is
to follow the time evolution of a distribution of system
points under the action of both the deterministic part of the
evolution and the stochastic part. From the evolution of this
probability distribution, we can determine the average time
behavior of the system and hence the coherence or, more
precisely, the regularity of the noise-induced pulses. Our ap-
proach is similar in spirit to that used previously by other
authors �4,9,47� for the FitzHugh-Nagumo neuron model.
Those authors, however, considered the case in which noise
appears only in the dynamics of the slow variable. In this
paper, we extend the analysis to a discrete-time model and
we allow for noise in the dynamics of both the fast and slow
variables.

To understand the dynamics, we divide the Rulkov model
behavior into three temporal phases and ignore the relatively
fast transitions between the phases. �Reference �9� gives a
detailed justification of this approach.� The “activation
phase” occurs near the no-noise fixed point at x*=−1 and
y*=−1−� /2. The excursion itself is divided into two parts: a
“pulse phase” with x�0 and a “recovery phase” during
which x increases from about −1.5 to −1 �the location of the
no-noise fixed point� as seen in Fig. 3. The system then re-
sides in the neighborhood of the no-noise fixed point until a
sufficiently large noise fluctuation allows escape from the
“basin of attraction” of the fixed point. We note that the basin
of attraction for the fixed point is actually the entire state
space, but we distinguish between initial conditions that lead
to trajectories that stay in the neighborhood of the fixed point
and those that lead to a long excursion through state space
before returning to the fixed point.

For the Rulkov model, we should, in principle, use a two-
dimensional, discrete-time Fokker-Planck analysis with a
distribution function for the two dynamical variables x and y.
Here we will use continuous-time models because the rela-
tive change in variables from one iteration to the next is
small. Methods for handling multidimensional Fokker-
Planck analyses and the corresponding first-exit-time prob-
lem are given in standard references dealing with stochastic
processes �43–46�. If the time scales between the fast vari-
able and the slow variable are sufficiently distinct, however,
we can use the method of “adiabatic elimination” to remove
the fast variable from the analysis: we assume that the fast
variable quickly relaxes to the “equilibrium” value associ-
ated with the present value of the slow variable. In that case,
the problem reduces to a one-dimensional model. Below we
shall show that we can also use a one-dimensional model
when noise is added only to the fast dynamics. This proce-
dure, as we shall demonstrate, gives an adequate, but not
perfect, account of stochastic coherence in the Rulkov and
FitzHugh-Nagumo models. The limitations of this approach
will be discussed in Sec. VII.

B. Fast and slow decomposition

First, we consider a general two-dimensional dynamical
system with a fast variable x and a slow variable y. The
multi-time-scale dynamics can be written in the following
form:

dx

dt
= fx�x,y� ,

dy

dt
= 	fy�x,y� , �4�

where 	
1 sets the time-scale separation. The equation for
the time derivative of y is said to form a “singular perturba-
tion” for the x dynamics, because in the limit 	→0, the
two-dimensional system turns into a one-dimensional sys-
tem. We can approach the dynamics in two ways. If we set
	=0, then we have the one-dimensional system

FIG. 7. The logarithm of the regularity R plotted as a function of
log10 D for �=�=10−4 �open symbols� and �=�=10−2 �solid sym-
bols� for �=1.99. For each data set, on the left �squares�, noise is
added to y alone. On the right �circles� noise is added to x alone.
The uncertainty bars indicate the standard deviation of the mean
over ten noise realizations. The solid curves are the results of the
Fokker-Planck analysis described in Sec. IV.
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dx

dt
= fx�x,y� �5�

with the constraint ẏ=0; that is, we treat y as a fixed param-
eter. On the other hand with 	 small but finite, we observe
that x relaxes quickly to a value that satisfies fx�x ,y�=0,
which gives a state-space curve traditionally called the x
nullcline. �The curve is sometimes called the “slow mani-
fold.”� As y evolves, x tracks along the x nullcline with oc-
casional jumps between different branches of the nullcline. A
specific example will be given below.

The slow manifold idea can be approached from another
direction by changing the time variable to �=	t in which
case Eq. �4� becomes

	
dx

d�
= fx�x,y� ,

dy

d�
= fy�x,y� . �6�

The new “slowed” time scale allows us to focus on the y
dynamics. Setting 	=0, we end up with a one-dimensional
system for y with the constraint fx�x ,y�=0, as before. We
will use these ideas below to separate the dynamics for the
Rulkov model �and later for the FitzHugh-Nagumo model�
into one-dimensional subsystems.

An examination of the state-space trajectories for the sys-
tem indicates that a one-dimensional approximation is valid
in the parameter range considered in this paper because of
the difference in time scales for the fast variable �x� and the
slow variable �y�. Figure 8 shows state-space trajectories for
the noise-induced pulses for the Rulkov model. The trajecto-
ries closely track the x nullcline except for rapid jumps be-
tween the branches.

C. First-exit times

As we mentioned previously, for small deviations from
the no-noise fixed point in the excitable regime, the Rulkov
model exhibits small-amplitude damped oscillations relaxing
to the no-noise fixed point. Here we will ignore those oscil-
lations. If the oscillation period is comparable to the pulse
length, an “anticoherence resonance” effect can occur �47�:
decreasing noise can lead to a regularity R�1. That is, the
regularity can be less than that for a Poisson distribution of
spikes. Our data do not exhibit such an effect because, for
the parameter values chosen, the oscillation period is shorter
than the pulse length.

The crucial ideas for the Fokker-Planck analysis are to
divide the behavior into distinct temporal phases �4,9,47�, to
model the dynamics in each of the phases �in our case an
activation phase, a pulse phase, and a recovery phase�, and to
solve the corresponding first-exit-time problems for the mean
and variance of the time spent in each phase. The measure of
the overall regularity of the system’s behavior is given by

R =
�Ta� + �Tr� + �Tp�

�var�Ta� + var�Tr� + var�Tp�
, �7�

where �Ta� is the mean activation time and var�Ta� its vari-
ance, with analogous definitions for the pulse and recovery
phases. In writing Eq. �7�, we are assuming that the variances
add, an appropriate assumption for either Gaussian or expo-
nential distributions.

When noise is added to only one of the variables, we
model the dynamics of each of the phases with a Langevin
equation of the form

ż = −
dU�z�

dz
+ �D��t� , �8�

where z can be either the x or y variable. U�z� is a potential
function that describes the deterministic part of the time evo-
lution, while ��t� describes the stochastic evolution. We as-
sume that the noise term is a white-noise, Gaussian-
distributed variable with a mean of zero and a variance given
by D. �Empirically, we have found that the simulation results
are essentially the same if we use bounded white noise, col-
ored noise with a correlation time short compared to the
pulse length, or “noise” produced by deterministic chaotic
dynamics. In this paper we restrict ourselves to white,
Gaussian-distributed noise.� Once we have the potential in
hand, we can calculate the mean first-passage time �T� and
its second moment �T2� from the standard expressions for a
one-dimensional first-exit-time problem �43–46� in the
Fokker-Planck approximation:

�T�w�� =
2

D
	

w

a

du e2U�u�/D	
b

u

d� e−2U���/D �9�

�T2�w�� =
4

D
	

w

a

du e2U�u�/D	
b

u

d� e−2U���/DT��� . �10�

Here a is the absorbing boundary for the region, b is the
reflecting boundary, and w is the injection point �initial loca-

FIG. 8. Rulkov model state-space trajectories �heavy symbols�
for noise-induced pulses with Dx=10−4 and Dy =0. The x nullcline
is indicated by the thin curve. Here we use �=1.99,�=�=0.001.
The state-space locations of the activation, pulse, and recovery
phases are indicated. The larger circles indicate the three fixed
points of Eq. �1� with y viewed as a fixed parameter.
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tion�. In writing Eqs. �9� and �10�, we have assumed that b

w�a. For a�w
b, the limits of integration need to be
adjusted accordingly �43�. The average is taken with respect
to the noise realizations. We note that if U is a double-well
potential, Eqs. �9� and �10� reduce to the Kramers form �43�
for small noise amplitudes.

D. Analysis for Dx=0

To analyze stochastic coherence in the Rulkov model, we
first treat the case in which noise is present only in the dy-
namics of the slow variable y in Eqs. �1� and �2�. This is the
case treated by Ref. �9� but with a different �but equivalent�
formulation of the potential function. We assume that there is
a sufficient separation of time scales so that y in Eq. �1� can
be treated as a slowly varying parameter and that the behav-
ior of x is “slaved” �48� to that of y. For the discrete-time
Rulkov system given by Eqs. �1� and �2�, the nullclines are
the curves in state space that satisfy

xn+1 − xn =
�

1 + xn
2 + yn − xn = 0 �11�

and

yn+1 − yn = − �xn − � = 0. �12�

The y nullcline Eq. �12� is just a vertical line x=−� /�=−1
�for �=�� in state space. The x nullcline Eq. �11� is given by
a cubic equation for y as a function of x:

y = h�x� = x −
�

1 + x2 . �13�

The nullclines intersect at the no-noise fixed point. Figure 8
shows that the trajectories track the x nullcline but make
rapid transitions from one branch of the nullcline to the other
at the local extrema. Standard phase-space methods �49�
show that the recovery and pulse branches are stable in the
sense that trajectories starting near those branches quickly
approach those branches, while the middle branch, between
the two extrema, is unstable.

In using the nullclines to define the trajectories, we are
making two approximations. First, we ignore the time spent
in making the transition from one branch of the nullcline to
the other. Figures 3 and 8 show that the transition in the fast
variable x is not instantaneous, but for �=�=10−3, the tran-
sition time is less than 5–6 % of the pulse and activation
times. Second, the nullcline approximation ignores the oscil-
latory behavior of the trajectories in the neighborhood of the
�no-noise� fixed point. We believe that this approximation is
the limiting factor in our calculations. In order to use Eqs. �9�
and �10�, we need a potential function U�y� for the dynamics.
We now proceed to find U�y�.

From Eq. �12�, we see that the deterministic part of the y
dynamics is given by

yn+1 − yn = − �xn − � . �14�

We then introduce the following ordinary differential equa-
tion �ODE�:

ẏ = − �x�t� − � . �15�

In employing Eq. �15� in place of Eq. �14�, we are assuming
that the unit time step is sufficiently small compared to the
activation, pulse, and recovery durations and that the
changes in y per unit time step are small �see Fig. 3� so that
we may use ẏ�t=yn+1−yn with �t=1. In other words, Eq.
�14� can be viewed as an Euler approximation for the ODE
Eq. �15�.

We use x as a function of y on the x nullcline to convert
Eq. �15� into a differential equation involving y alone. In
principle, we could use Eq. �13� �a cubic equation� to solve
for x in terms of y and then find dU /dy. We would then
integrate that result to find U�y� �9�. That procedure, how-
ever, leads to intractable first-exit-time integrals. In practice,
it is simpler to approximate the nullcline near its extrema
with quadratic functions. �Since the “escape” from one
branch to the other occurs near the extrema, we need ap-
proximate the nullclines only near the extrema.� Let
�xeA ,yeA� and �xeP ,yeP� be the coordinates of the two x
nullcline extrema. We approximate the nullcline in the neigh-
borhood of the extrema as

y = yeA,eP + 1
2�A,P�x − xeA,eP�2, �16�

where �A and �P are parameters to be determined later. �For
the Rulkov model we see that �P�0 for the pulse phase and
�A�0 for the recovery-activation phase.� This approxima-
tion in fact works well along the entire recovery-activation
and pulse branches visited by the trajectories. Solving for x
in terms of y yields

x = xeA,eP ��2�y − yeA,eP�
�A,P

, �17�

where the upper sign applies to the recovery and activation
�left� branch and the lower sign to the pulse �right� branch of
the x nullcline.

The Langevin equation for the y dynamics becomes

ẏ = ± ��2�y − yeA,eP�
�A,P

− ��xeA,eP + �� + �Dy��t� . �18�

From Eq. �18�, we see that the potential function is given by

UA,P�y� = � �� 2

�A,P

2

3
�y − yeA,eP�3/2 + ��xeA,eP + ��y .

�19�

We may safely ignore additive constants in the potential
function since they will cancel in the first-exit-time integrals.
Since �A is negative on the activation branch and y−yeA is
also negative, we rewrite the previous equation as

UA,P�y� = � ��A,P

�8

3

 y − yeA,eP

�A,P

3/2

+ ��xeA,eP + ��y ,

�20�

where again the upper sign applies to the recovery branch
and the lower to the pulse branch.

We determine the potential parameters �A,P from the x
nullcline function h�x� given in Eq. �13�:
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�A,P = 
 �2h�x�
�x2 


xeA,eP

= 
 2�

�1 + x2�2�1 −
4x2

1 + x2�

xeA,eP

.

�21�

All of the relevant parameter values can be calculated di-
rectly from the Rulkov model equations.

In using the potential function to evaluate the regularity, it
turned out to be useful to calculate the recovery and activa-
tion times separately even though they use the same U�y�.
Since the integrands of the integrals used to evaluate the
first-exit times are sharply peaked near the no-noise fixed
point, the numerical procedures were simplified by treating
the recovery and activation times separately, the latter of
which is dominated by behavior near the fixed point.

Although we have reduced the calculation of the regular-
ity to the numerical evaluation of integrals, we note that
these multidimensional integrals are notoriously difficult to
evaluate precisely �50� because the integrands are very
sharply peaked for small noise variances. To see what preci-
sion is required, we note that the regularity R can be written
as

R = 
 �T2�
�T�2 − 1�−1/2

�22�

or equivalently

�T2�
�T�2 = 1 +

1

R2 . �23�

If we want to calculate R with a relative precision �R /R, we
must be able to calculate the ratio of �T2� to �T�2 with a
precision 2�R /R3. For example, if we wish to calculate a
regularity value of 10 with 10% relative precision, the ratio
of the mean values must be given to a precision of about
0.2%. For small noise variances, this turns out to be quite
tedious and computationally expensive, particularly for the
integrals for �TA� and �TA

2�, whose integrands are sharply
peaked near the fixed point. In the Appendix , we develop an
analytic approximation for low noise amplitudes that is com-
putationally more efficient. The results of the analysis dis-
played in the figures, however, were calculated using the full
numerical evaluation of Eqs. �9� and �10� with the appropri-
ate potential functions.

In using Eqs. �9� and �10� to fit the data, we made small
changes in the location of the escape point �the absorbing
boundary� of the activation phase to compensate for the ne-
glect of the oscillatory motion near the fixed point. �An ex-
panded version of Fig. 8 �not shown� indicates that the es-
cape point is not precisely at the extremum of the x
nullcline.� The fractional shift in the escape point was typi-
cally 10−3–10−4. There are no other adjustable parameters.
Figure 9 shows the results of the analysis for �=�=0.001
and two values of �. The agreement with the simulations is
remarkably good given the simplicity of the models of the
dynamics.

E. Dy=0

In this section we treat the case when noise is present only
in the dynamics of the fast �x� variable. Because we are now

focusing on the dynamics of the fast variable, we can no
longer use the adiabatic elimination procedure to reduce the
system to a one-dimensional system. Instead, we proceed
phenomenologically and simply assume one-dimensional be-
havior. Again, we divide the dynamics into three phases: an
activation phase in the neighborhood of the no-noise fixed
point, a pulse phase, and a recovery phase. The activation
phase can be handled by standard procedures because the
behavior can be described as fluctuations around a fixed
point of the system. In particular, for the activation phase, we
assume that U�x� is a one-dimensional quadratic potential
U�x�= 1

2kA�x−x*�2 where x* is the no-noise fixed point. We
determine the parameter kA by evaluating the Jacobian deter-
minant of the map functions Eqs. �1� and �2� at the no-noise
fixed point.

For a two-dimensional map system, we have two �local�
Lyapunov exponents, which in general may be complex. For
the Rulkov map model, the Jacobian matrix evaluated at the
fixed point �x* ,y*� is given by

�

� f

�x



*

 � f

�y



*


 �g

�x



*

 �g

�y



*

� = � − 2�x*

�1 + x*2�2 1

− � 1
� . �24�

At the fixed point, we have x*=−1 �for �=��, and the eigen-
values are

�1,2 =
� + 2 ± ��� − 2�2 − 16�

4
. �25�

With �=0.001 and 1.998���1.999, the two eigenvalues
form a complex conjugate pair, the absolute value of the

FIG. 9. The results of the Fokker-Planck analysis described in
the text �solid curves� and the simulation data for the Rulkov model
with �=�=10−3. Open symbols, �=1.99; solid symbols, �=1.91.
On the left Dx=0 �squares�; on the right Dy =0 �circles�.
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eigenvalues exceeds 1, and the behavior displays sustained
oscillations. Near the lower limit of this range, the oscilla-
tions are nearly sinusoidal and centered approximately on the
fixed point. At the upper end of this range the oscillations are
non sinusoidal. For ��1.998, the range relevant for our con-
siderations, the approach to the fixed point consists of expo-
nentially damped oscillations �see Fig. 2�. In the standard
way �51�, we express the two local Lyapunov exponents �1
and �2 in terms of the eigenvalues �1 and �2:

�1 = ln �1, �2 = ln �2. �26�

�The real part of the Lyapunov exponents determines the
divergence or convergence of nearby trajectories.�

For our one-dimensional model, we ignore the oscillations
and focus on the exponential decay to the fixed point. The
potential parameter kA is related to the local Lyapunov expo-
nent in the usual way �51�:

kA = − Re��� = − ln��� . �27�

As � decreases, kA increases, indicating a larger barrier to
surmount before escape from the fixed point region.

To use Eqs. �9� and �10� for the activation phase, we also
need numerical values for the absorbing boundary location
relative to the fixed point, the injection point, and the reflect-
ing boundary. The injection point is taken to be the no-noise
fixed point. The absorbing boundary was chosen to give a
reasonable match to the mean activation time as a function of
the noise amplitude. The results were insensitive to the loca-
tion of the reflecting boundary.

For the pulse and recovery phases, the system’s behavior
remains close to the �no-noise� fixed points of Eq. �1� with y
viewed as a slowly changing parameter. In general, there will
be three fixed points. See Fig. 8. First, let us consider the
pulse phase. We assume that the fixed point x3

* near x=0
moves at a constant “velocity” �P during the pulse phase.
With this approximation, in the absence of noise, the pulse
phase time is given by

TP =
aP − wP

�P
, �28�

where aP−wP is the “distance” traveled by the fixed point
from the injection point wP to the absorbing point aP at the
rate given by �P. When noise is present, we get fluctuations
in the pulse time due to the noise. We model the fluctuations
by adding a fluctuating term 	 to the distance traveled during
the pulse phase:

TP�	� =
aP − wP + 	

�P
. �29�

The mean pulse length is then given by

�Tp� =
aP − wP

�P
, �30�

since the mean of the noise term is zero.
The noise, however, does affect the mean-squared pulse

time. The mean-squared pulse time is given by

�TP
2 � = ���aP − wP + 	�/�P�2� = 
aP − wP

�P
�2

+
�	2�
�P

2 . �31�

To relate the fluctuations to the noise variance D, we assume
that the behavior around the �moving� fixed point can be
modeled as an Ornstein-Uhlenbeck process for which the
associated Langevin equation is

	̇ = − kP	 + �D��t� . �32�

Under these conditions, the variance of 	 is time-dependent
�52,53�:

var�	� =
D2

2kP
�1 − e−2kPt� . �33�

kP is determined from the local Lyapunov exponent at the
fixed point x3

*. In the Rulkov model, however, the Lyapunov
exponent varies with x in the pulse phase. Hence, we use an
average value weighted toward the smaller values of x just
before the transition to the recovery phase. The “velocity” �P
can be estimated from the pulse duration. See Figs. 2 and 3.
As an example, for �=1.99 and �=�=10−3, we find that
kP�0.2 and TP�100 for the Rulkov model with �=�
=10−3. Hence, we are in the long-time limit, and Eq. �33�
reduces to

�	2� =
D2

2kP
. �34�

Using Eq. �34� in Eq. �31�, we find that the mean-squared
pulse time is given by

�TP
2 � = 
aP − wP

�P
�2

+
D2

2kP�P
2 , �35�

where again the angular brackets indicate an average over
noise realizations.

We use a similar analysis for the recovery phase, where
the trajectory tracks the fixed point x1

* near x�−1.5, with the
results

�TR� =
aR − wR

�R
�36�

and

�TR
2� = 
aR − wR

�R
�2

+
D2

2kR�R
2 . �37�

For the recovery and pulse phases, the injection point w and
the absorbing point a are determined from the nullcline.

Figure 9 shows the data and the results of our calculations
for the regularity as a function of noise for two values of �.
The adjustable parameters are the absorbing boundary
�which we allow, as before, to be slightly different from the
extremum of the x nullcline� for the activation phase and the
parameters kP and kR for the pulse and recovery phases. We
see that the agreement is quite good given the simplicity of
the approximations.
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F. Two noise sources

When both fast and slow noise sources are present or if
we wish to go beyond the one-dimensional approximations
used above, we need to develop a full two-dimensional
analysis of the first-exit time problem. In this paper, we will
use a simple statistical argument to link the two one-
dimensional models. We shall see that this simple method
gives a reasonable account of the data shown in Fig. 6.

In the low-noise limit, each noise source alone produces a
series of pulses with the number of pulses in a given time
interval described by a Poisson distribution. As is well
known �42�, the corresponding interspike intervals have an
exponential distribution. The mean interspike interval is de-
termined primarily by the activation time, and the mean ac-
tivation time is given by the reciprocal of the activation rate
�TA�=1/r and the variance is given by var�Ta�=1/r2.

If both noise sources are present, in the low-noise limit
the activation rate r will be the sum of the activation rates of
the two sources individually. In that case the mean activation
time is given by

�TA� =
�Tf��Ts�

�Tf� + �Ts�
, �38�

where Tf ,s are the activation times due to each of the noise
sources �fast and slow� individually. Similarly, the mean-
squared activation time is given by

�TA
2� =

�Tf
2��Ts

2�

2��Tf
2/2 + �Ts

2/2�2
. �39�

It is straightforward to show that if Tf and Ts have exponen-
tial distributions, so does TA. Given the mean activation time
and mean-square activation time for each of the noise
sources individually, we can use Eqs. �38� and �39� to find
the corresponding quantities for the overall activation time.

For the pulse and recovery phases, we use the minimum
of �TP,R� for either the fast or slow noise to characterize the
times for those phases of the dynamics. In essence, which-
ever process �fast noise or slow noise� gets the system to the
end of the pulse phase or the recovery phase first wins. Fig-
ure 10 shows the results of this simple statistical analysis for
the Rulkov model with the means and variances calculated as
described in Secs. IV D and IV E. The results are in reason-
ably good agreement with the simulation data shown in
Fig. 6.

V. FITZHUGH-NAGUMO MODEL AND STOCHASTIC
COHERENCE

In this section we turn to a continuous-time, differential
equation model of an excitable neuron. Neuron behavior has
traditionally been described by differential equation models
more closely tied to physiological processes than is the
Rulkov discrete-time model. We will use the well-known
FitzHugh-Nagumo model �54,55�. We employ the form used
by �9� but with independent noise terms added to each equa-
tion:

d�

dt
=

1

	
���t� − �3�t� − w�t�� + �D����t� , �40�

dw

dt
= ���t� − w�t� + b + �Dw�w�t� . �41�

Here � represents the neuron membrane voltage and w de-
scribes a gating-ion concentration. 	 is a small parameter that
sets the separation of the fast and slow time scales. We shall
use 	=0.001 in our analysis. The parameters � and b set the
operating conditions for the model. We shall use �=1.5. For
b�0.481 125, the model exhibits periodic pulses. To exhibit
stochastic coherence in this model, we shall use b=0.4812
and 0.53, both of which put the model in an excitable re-
gime. The two independent Gaussian-distributed noise
sources �� and �w have zero mean and variance D.

We integrated Eqs. �40� and �41� using a modified Euler
procedure as described by Gillespie �52�. The integration
step size was chosen to be small enough to reproduce accu-
rately the no-noise pulse behavior �for b�0.481 125� gener-
ated by a high-precision adaptive Runge-Kutta method. Fig-
ure 11 displays the regularity of the noise-induced pulses as
a function of the logarithm of the noise variance for the
FitzHugh-Nagumo model. Again we see that the noise added
to the slow dynamics produces a regularity with a smaller
maximum at lower noise amplitudes than does noise added
to the fast dynamics.

VI. FOKKER-PLANCK ANALYSIS OF FITZHUGH-
NAGUMO STOCHASTIC COHERENCE

We can provide a quantitative account of stochastic coher-
ence in the FitzHugh-Nagumo model in analogy with our
analysis for the Rulkov model. For the parameter values used
here and in the absence of noise, the system approaches the
�no-noise� fixed point given by the intersection of the � and
w nullclines. When a sufficiently large noise burst kicks the
system away from the fixed point, the trajectories follow the
stable branches of the � nullcline until a jump occurs be-
tween branches. Figure 12 shows the � and w nullclines for

FIG. 10. The results of the Fokker-Planck analysis of the
Rulkov model stochastic coherence with noise sources present in
both dynamical variables. �=1.99 and �=�=10−3. The regularity R
is plotted as a function of log10Dx and log10Dy. Note the general
agreement with the simulation results presented in Fig. 6.
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the FitzHugh-Nagumo �FHN� model superposed on several
noise-induced pulse trajectories.

For noise added only to the slow w variable, we can use
adiabatic elimination of the voltage variable � to find an
effective potential for the w dynamics. That is, we need to
solve for ��w� along the � nullcline. This solution can be
found exactly �9� using w=�−�3, but as with the Rulkov
model, it is computationally simpler to use a quadratic ap-

proximation near the extrema of the nullcline. Near the ex-
trema at ��A,P ,wA,P�, we may write

w��� = wA,P + 1
2kA,P�� − �A,P�2. �42�

Taking the second derivative of the � nullcline equation, we
find that kA,P=−6�A,P. Solving for � gives us

� = �A,P ��2�w − wA,P�
kA,P

, �43�

where the upper sign applies to the activation-recovery
branch and the lower sign to the pulse branch. Since the
deterministic part of the Langevin equation for w�t� is given
by

dw

dt
= �� − w + b = ��A,P � ��2�w − wA,P�

kA,P
− w + b ,

�44�

we see that the effective potentials for the activation-
recovery and pulse phases are given by

UA,P�w� = ±
�8

3
�kA,P
w − wA,P

kA,P
�3/2

− w���A,P + b� + w2/2,

�45�

where again the upper sign applies to the activation-recovery
phase and the lower sign to the pulse phase.

Equation �45� may now be used in Eqs. �9� and �10� to
find the mean activation and pulse times as well as their
variances. �In practice, we separate the recovery and activa-
tion phases as we did for the Rulkov model.� From those
quantities we calculate the regularity for the FHN model for
the case in which noise is added only to the slow variable w.
The results are shown in Fig. 11. The only adjustable param-
eter is the activation-phase absorbing boundary, which is
close to the � nullcline local minimum. The typical fractional
deviation from the nullcline minimum is 10−3.

When noise is added only to the fast variable �, we use a
method identical to that used in the Rulkov model: we as-
sume that the dynamics track the �no-noise� fixed points of
Eq. �40� during the pulse and recovery phases with w viewed
as a slowly changing parameter. The fixed points �* satisfy
the equation

�* − �*3 = w , �46�

yielding, in general, three fixed points. During the recovery
and activation phase, the system tracks the fixed point �1

*

shown in Fig. 12. Eventually w decreases sufficiently and
�1

* disappears. Then the system jumps to the fixed point �3
* in

Fig. 12 corresponding to the pulse phase. w then increases
until �3

* disappears and the system jumps back to �1
*.

For the pulse and recovery phases, we model the dynam-
ics near the fixed point �* as motion in a quadratic potential

UP,R��� = 1
2�P,R�� − �3,1

*�2, �47�

where �P,R= �dG /d����3,1
* and G���= ��−�3−w� /	. In analogy

with the Rulkov model analysis for the pulse and recovery
phases, we have

FIG. 11. A plot of the regularity of the noise-induced pulses for
the FitzHugh Nagumo model. 	=0.001,�=1.5. Solid symbols, b
=0.4812; open symbols, b=0.53; squares, D�=0; circles, Dw=0.
The uncertainty bars indicate the standard deviation of the mean for
ten noise realizations, each consisting of a sequence of 200 time
units. �Each pulse has a duration of about 1.5 time units.� The solid
curves are the results of the Fokker-Planck analysis described in the
text.

FIG. 12. � nullcline �cubic curve� and w nullcline �straight line�
for the FitzHugh-Nagumo model superposed on several noise-
induced pulse trajectories �small circles� for b=0.4812,�=1.5, and
	=10−3. The activation, pulse, and recovery phases are indicated.
The coordinates of the � nullcline local minimum are ��A ,wA� and
those of the local maximum are ��P ,wP�. The three fixed points for
the no-noise version of Eq. �40� are indicated by the larger, filled-in
circles.
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�TP,R� =
aP,R − wP,R

�P,R
�48�

and

�TP,R
2 � = �TP,R�2 +

D�

2�P,R�P,R
2 , �49�

where �P,R is the velocity of the fixed point during the pulse
or recovery phase, respectively. Since both �P and �R change
as the fixed point moves, we use values weighted to empha-
size the noise dependence near the end of the pulse and re-
covery phases.

For the activation phase, we use a quadratic potential
model UA���= 1

2kA��−�0
*�2 with the potential parameter kA

determined by the eigenvalues of the Jacobian matrix of the
FitzHugh-Nagumo equations �40� and �41�. �0

* is the no-noise
fixed point of the FitzHugh-Nagumo equations. The matrix
takes the form

J* = 
�1 − 3�0
*2�/	 − 1/	

� − 1
� . �50�

Figure 11 shows the results of this analysis. Again, the
agreement with the simulation data is satisfactory given the
simple nature of the approximations used. The only adjust-
able parameters were the location of the absorbing boundary
for the activation phase and the parameters �P,R for the pulse
and recovery phases.

VII. DISCUSSION AND CONCLUSIONS

We have shown that relatively simple one-dimensional
models of the dynamics can account for the fast and slow
noise effects in two distinct models of excitable systems. For
both models, we explored the effects of changing several of
the parameters. We now give a more qualitative explanation
of the observed effects and draw some general conclusions
about our approach.

First, let us discuss how the Rulkov model results depend
on the parameters of the model. As � decreases below 1.99,
the no-noise fixed point moves further from the nullcline
extremum, thereby increasing the barrier the system must
overcome before it can move away from the fixed point.
Hence, the noise variance must be larger to achieve a given
level of activation. This effect explains the shift in the loca-
tion of the regularity maximum as � decreases as illustrated
in Fig. 5. Since the noise variance is larger, the noise has a
larger effect on the pulse and recovery times, thus lowering
the overall regularity of the pulse sequence as seen in Fig. 5
for smaller values of �. A similar effect occurs with increas-
ing b in the FitzHugh-Nagumo model as illustrated in
Fig. 11.

When we change the parameters � and � in the Rulkov
model �restricting ourselves to the case �=��, we are effec-
tively changing the separation between the fast and slow
time scales. Comparing Figs. 5 and 7, we see that for smaller
values of � and �, when the time scale separation is larger,
the distinction between noise added to the fast and slow dy-
namics is enhanced. In that case, the slow variable dynamic

range is reduced compared to that of the fast variable and
smaller values of the noise variance in the slow dynamics are
required to achieve activation. Conversely, increasing � and
� reduces the time scale separation and the difference in the
regularity with fast and slow noise is reduced. Reference �9�
demonstrated a similar, but less dramatic, shift in the regu-
larity for the case in which noise is added only to the slow
dynamics in the FitzHugh-Nagumo model when the time
scale separation was changed.

We can look at these effects another way by determining
which initial conditions in the neighborhood of the no-noise
fixed point lead to trajectories that escape from the fixed
point and which stay in its neighborhood. Figure 13 illus-
trates the escape region for the Rulkov model for �=1.99
and �=�=10−3. We see that deviations from the fixed point
required to generate a pulse are much smaller in the y �slow
variable� direction than in the x �fast variable direction�. The
bars centered on the fixed point location indicate the standard
deviation of the noise intensity when the regularity has its
maximum value. Compare Fig. 5. We should note that the
trajectories may oscillate around the fixed point before es-
caping. Nevertheless, Fig. 13 gives an indication of the rela-
tive sizes of the deviations from the fixed point required to
generate a pulse. The difference in ranges for x and y are
consistent with the difference between the relevant noise
ranges as illustrated in Figs. 5 and 7. We emphasize that Fig.
13 is a result of the simulations and that all of the results of
the Fokker-Planck analyses were carried out with the one-
dimensional models described in Secs. IV and VI.

FIG. 13. A plot of the escape region for the no-noise Rulkov
model for �=1.99 and �=�=0.001. Initial points below the curve
lead to trajectories that stay in the neighborhood of the fixed point,
located at �0,0� in this plot. �The steps in the curve are due to finite
sampling of the initial conditions.� Initial points above the curve
lead to trajectories that make a large excursion through state space
before returning to the fixed point. The cross, centered on the fixed
point, indicates the standard deviation of the noise intensity when
the regularity has its maximum value for these parameter values.
The filled circle and square indicate the escape points for the one-
dimensional models. The short vertical and horizontal lines indicate
the range of escape points used in the data fits.
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When � and � increase, the boundaries of the escape
region are further from the fixed point �not shown� and a
larger noise variance is required for activation. This accounts
for the shift towards larger log D for larger � and � seen in
Fig. 7. The larger noise variance is then more disruptive for
the pulse and recovery phases leading to lower maximum
values of the regularity.

We have seen that the maximum value for the regularity is
larger when noise is added to the fast variable dynamics than
when it is added to the slow variable dynamics. The fast
variable behavior is linked to the fixed points, whose loca-
tions drift as the slow variable evolves. Hence, the noise is
less disruptive of the dynamics when added to the fast vari-
able because of the “restoring” force associated with the
fixed points. On the other hand, the slow variable dynamics,
except for the behavior near the no-noise fixed point, is as-
sociated with “drift” motion along the nullcline, for which
there is no restoring force. The drift motion is more easily
disturbed by noise and hence the regularity is reduced com-
pared to the fast dynamics case.

When noise is present for both the fast and slow dynam-
ics, we see that stochastic coherence occurs as a function of
Dy, only if Dx is sufficiently small. See Fig. 6. If Dx is near to
or larger than the value at which the maximum in the regu-
larity occurs for x noise alone, the y noise just attenuates the
maximum regularity. Conversely, if Dy is sufficiently large,
there will be no maximum in the regularity viewed as a func-
tion of Dx. The practical implication is that a small amount of
noise in the slow variable can wipe out the stochastic coher-
ence maximum as a function of noise intensity in the fast
variable. Thus experimenters looking for stochastic coher-
ence in systems with multiple time scales must be careful to
minimize the noise in the slow variable�s� to permit obser-
vation of stochastic coherence as a function of noise in the
dynamics of the fast variable�s�. �Since the relevant noise
range for the fast variable is much larger than that for the
slow variable, we assume that the experimenter will be aware
of noise added to the fast variable.�

We have demonstrated that a one-dimensional Fokker-
Planck first-exit-time analysis leads to predictions for the
regularity as a function of noise intensity that are in reason-
ably good agreement with the results of the numerical simu-
lations. There are, however, significant differences between
the Fokker-Planck results and the simulations, particularly
for low noise amplitudes. Several factors can account for the
deviations. First, and perhaps the most important, is our ne-
glect of the two-dimensional oscillatory dynamics in the
neighborhood of the fixed point. Our one-dimensional mod-
els by necessity miss that oscillatory behavior. When the
systems are further from threshold, the large noise intensity
required to activate the system masks the oscillatory behav-
ior and the agreement with the numerical simulations is en-
hanced.

A second deficiency in our models is the neglect of the
dynamics in the transitions from the fixed point to the pulse
phase and from the pulse phase to the recovery phase. The
transition times become more important for larger values of
� and � and Fig. 7 shows that the Fokker-Planck results are
less satisfactory for �=�=10−2. Third, we have approxi-
mated the pulse and recovery phases using rather simple

models that miss some of the dynamics near the transition
points. In spite of these limitations, the general agreement
between the simulation results and the Fokker-Planck analy-
sis is rather good given that the noise range extends over five
or six orders of magnitude for most of the results. This agree-
ment indicates that we have accounted for the essential phys-
ics of the fast and slow noise effects.

Although we made no attempt to model the behavior of
actual neurons, we note that the fast dynamics noise levels
explored in this paper are consistent, within an order of mag-
nitude, with the voltage noise levels observed in real neurons
�56�. Ion concentration fluctuations are more difficult to
model. Furthermore, on the physiological side, ion fluctua-
tions vary considerably among different types of neurons and
depend on conditions in the neuron itself. Nevertheless, the
noise levels required for stochastic coherence presented here
are consistent with �within an order of magnitude� “typical”
calcium-concentration fluctuations �57,58�. The calcium-
concentration fluctuations, however, vary widely due to clus-
tering of release mechanisms and the production of spatial
waves of calcium within the cell.

We argue that the fast and slow noise effect demonstrated
and explained here is quite general and should occur for any
excitable system with multiple time scales. Recognizing this
effect should also be important in experimental studies of
stochastic coherence. Specifically, if low-level �and perhaps
barely detectable� noise is present in the dynamics of the
slow variable, stochastic coherence for the fast variable dy-
namics may be significantly reduced or even eliminated.
Where possible, experimentalists should vary the noise in-
tensity for both the fast and slow dynamics.
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APPENDIX

Here we derive an expression for the mean activation time
of an excitable system, applicable in the limit of low noise.
The result derived here is analogous to the well-known
Kramers result �43� but differs from the Kramers result be-
cause the “escape” from the fixed point does not occur at a
maximum of the potential function. Figure 14 shows a sketch
of the potential function and the absorbing boundary appli-
cable to both the Rulkov and FitzHugh-Nagumo models.

We repeat here the integral for the mean activation time:

�TA� =
2

D
	

w

a

du	
b

u

d� e2�U�u�−U����/D. �A1�

For small noise variances, the most important contribution to
the integral occurs near the fixed point y*. The argument of
the exponential will be largest when u�a and ��y*. We
use, therefore, a double Taylor series expansion for the po-
tential difference:
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g�u,�� = U�u� − U���

= g�a,y*� + �u − a�
 �g

�u



a,y*
+ �� − y*�
 �g

��



a,y*

+ �u − a��� − y*�
 �2g

�u � �



a,y*
+

1

2
�u − a�2
 �2g

�u2

a,y*

+
1

2
�� − y*�2
 �2g

��2

a,y*

+ ¯ . �A2�

For the potential shown in Fig. 14, the linear u dependence
will dominate over the quadratic term. On the other hand, g
shows a maximum as a function of � at �=y*; so there only
the quadratic term is important. We define two parameters
that characterize the potential:


 �g

�u



a,y*
= 
 �U

�u



a,y*
� c , �A3�


 �2g

��2

a,y*

= 
−
�2U

��2 

a,y*

� k � 0. �A4�

Thus the approximate potential difference is

g�u,�� � g�a,y*� + �u − a�c − 1
2 �k��� − y*�2

� U�a� − U�y*� + �u − a�c − 1
2 �k��� − y*�2. �A5�

First, we evaluate the � integral

I��u� = 	
b

u

d� e−��k�/D��� − y*�2
. �A6�

Assuming that �k��b−y*� /D�1, which will certainly be true
for small D, we can set the lower limit of the integral to −�.

We then break the integral into two parts, and use the change
of variable y=��k� /D��−y*� to obtain

I��u� ��D

�k�
	−�

0

e−y2
dy + 	

0

��k�/D�u−y*�
e−y2

dy� .

�A7�

The first integral in Eq. �A7� is equal to �� /2. The second
integral is �� /2 times the error function

Erf�a� =
2

��
	

0

a

e−y2
dy . �A8�

The term in parentheses in Eq. �A7� has a lower limit of
�� /2 and an upper limit �for small noise values� of ��. For
the purposes of approximation, we can set the parenthetic
term equal to ��. The power series expansion of the error
function could be used for a higher-order approximation.

We now tackle the u integral. Taking into account the �
integral, we have

�TA� �
2��

D
�D

�k�
e�2/D��U�a�−U�y*��e−2ca/D	

w

a

du e2cu/D.

�A9�

The u integral is straightforward and we obtain

�TA� �
��

c
�D

�k�
e2�U/D�1 − e−2c�a−w�/D� , �A10�

where �U=U�a�−U�y*�. The parameters c , �k�, and �U can
all be estimated from the potential function for the particular
model being used. For the injection point, we may use w
=y*.

Equation �A10� has some similarities to the standard
Kramers expression �T�=Toe�U/D, but we see that the noise
dependence here is a bit more complicated. This complica-
tion arises because the absorbing boundary is not a maxi-
mum in the potential function, which is the usual assumption
made in deriving the Kramers formula.

We have found that Eq. �A10�, along with the assump-
tions that the activation times are described by an exponen-
tial distribution and that the pulse and recovery phases are
unaffected by noise, gives a good account of the low noise
behavior of our simulations. With these assumptions the
regularity is given by

R =
�TA� + �TR� + �TP�

�var�TA�
. �A11�

Equation �A11� reproduces the results of the full analysis
quite well for low noise variances while being considerably
faster computationally.

FIG. 14. A sketch of the potential function U�y� indicating the
absorbing boundary at a, the reflecting boundary at b, and the fixed
point at y*. w is the injection point.
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